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Motivation

• Affordable Low-Cost RGB-D Sensors: Applications in robotic navigation, per-
ception, 3D reconstruction

• Challenges in Raw Depth Data: Noise, Occlusions, Missing values, Sensor
or Object specific artifacts

• Limitations of Monocular Depth Estimation: While learning-based monocular
methods yield smooth, visually appealing depth maps, they lack metric accu-
racy and scale due to the absence of real depth signals.

• Integrating Sensor Data with Generative Models: Combine visual features
obtained from pretrained models with the geometric guidance from noisy but
real sensor depth for conditioning a diffusion model for more accurate depth
maps.

Method

Training. Following Marigold’s training pipeline [1], we adapt the pre-trained
U-Net from Stable Diffusion V2 as the latent denoiser, and take the frozen VAE
to encode input image, input sensor depth map, and ground-truth depth map.
We concatenate all three latent codes into a single input along the feature di-
mension. The input channels of the latent denoiser are tripled. To preserve the
pretrained weights, we duplicate the weight tensor of the input layer 3 times and
divide the values by three, similar to [1]. The latent denoiser is trained to predict
the added Gaussian noise with uniformly sampled noise level t.
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Fig. 1: System overview during training.

Inference. At inference time, the latent denoiser reconstructs the output depth
map by iteratively denoising an initially normally-distributed Gaussian noise.
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Fig. 2: System overview during inference.

Sensor Depth Simulation. We use SimSense [3], a depth sensor simulator, to
generate sensor depth maps using stereo images. This ensures that our input
sensor depth maps closely align with real-world depth sensors.

Fig. 3: Depth maps generated by SimSense using the stereo images exhibit the noise and incompleteness typical

of real-world depth maps which helps to reduce the sim-to-real gap.

Results

Baselines

• Marigold [1]. A diffusion-based monocular depth estimation method.

• Depth Anything V2 [2](small). A discriminative method for monocular
depth estimation.
The predicted depth maps are aligned to the ground truth using least squares
method before evaluation.

Datasets

• IRS and VKITTI. Seen during training.

• NYUv2. Unseen during training.
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Fig. 4: Qualitative results
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0.046 0.099 0.976 0.988

VKITTI
0.110 0.910 0.891 0.972

NYUv2
0.974

0.062
0.065 0.924

Marigold Least Squares 0.117 0.276 0.900 0.964
Depth Anything V2 Least Squares 0.121 0.261 0.886 0.961

Depth Completion
(ours)

Least Squares 0.064 0.212 0.951 0.970
Sensor depth scale

Marigold Least Squares 0.120 1.079 0.886 0.967
Depth Anything V2 Least Squares 0.239 2.132 0.588 0.881
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Least Squares
Sensor depth scale 0.270 2.929 0.574 0.937

Marigold Least Squares 0.093 0.080 0.910 0.970
Depth Anithing V2 Least Squares 0.098 0.064 0.904
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(ours)

Least Squares 0.084 0.906 0.971
Sensor depth scale 0.063 0.965

Fig. 5: Quantitative results

Conclusion and Future Work
• Diffusion models conditioned on RGB and noisy sensor depth exhibit a
slight improvement in accurate depth estimation compared to pure monoc-
ular depth estimation methods. This suggests that sensor depth provides
valuable guidance to the model for estimating accurate depth.

• Our approach demonstrates generalization to real-world indoor scenes, de-
spite being fine-tuned on synthetic data only. This can be attributed to the
fact that the original Stable Diffusion model was trained on large datasets,
capturing strong semantic and geometric priors from diverse domains.

• Future work aims to expand the conditioning inputs beyond RGB and stan-
dard depth by incorporating additional modalities such as thermal (infrared),
monochrome, near-infrared (NIR) images, semantic and instance masks to
capture both local and global features at the object part level for improving
generalization.
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