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1. Motivation

The cost-effectiveness and deployment simplicity of inexpen-
sive RGB-D sensors have led to their growing use in robotics
and agricultural applications. These sensors offer depth (D)
and dense color (RGB) information, which is essential for ap-
plications like 3D reconstruction, object perception, and nav-
igation. Low-cost sensors, however, frequently have substan-
tial noise, occlusions, missing regions, and sensor-specific
aberrations that skew the raw depth data they collect. These
imperfections hinder downstream tasks, limiting the sensors’
utility in real-world scenarios where accurate and reliable
depth information is essential.

By reducing noise and filling in missing values, tradi-
tional depth completion algorithms seek to transform un-
processed sensor outputs into clear, dense depth maps. The
varied and intricate artifacts found in field settings, particu-
larly in agricultural settings, are frequently difficult for these
approaches to handle. Simultaneously, monocular depth esti-
mation methods have made impressive strides in generating
depth predictions that are both visually smooth and seman-
tically rich. Despite their popularity, these learning-based
monocular techniques fall short of geometrically accurate
depth measurements and scale consistency due to reliance
on monocular pictures rather than depth signals.

Our work proposes a novel generative depth completion
method that bridges this gap by combining conditional gener-
ative techniques with raw depth sensor data. We mitigate the
drawbacks of monocular depth estimation while preserving
important geometric clues by conditioning a diffusion-based
generative model on the noisy but actual sensor depth.

Improved depth completion performance can enable
downstream tasks such as geometrically accurate depth maps
using low-cost RGBD sensors. For instance, enhanced field
robot mapping and navigation, enhanced manipulation and
detection of regions of interest, resilience to changing light-
ing conditions, leaf angle estimation in precision farming,
3D object reconstruction, and keypoint matching for safer,
more effective robot operation.

2. Related Work
2.1. Sim-to-Real

Depth images have lower sim-to-real gap as compared to
RGB images since they are not prone to inaccurate simu-
lated visual features in simulations[4, 5, 14]. For passive
stereo sensors, it is harder to simulate external lighting con-
ditions which is why active infrared based stereo sensors is
predominantly used to measure depth indoors.

However, for active infrared depth measurement, the er-
rors in depth depend on the surface properties of the object
such as transparency, reflectance and transmission which are
harder to recreate in simulations. A noise free approximation
of a scene’s depth image can be obtained by averaging mul-
tiple frames of the same static scene. The MAP (Maximum
a priori) estimate can be used for noise model parameter
estimation[19].

For reducing the sim-to-real gap, object material parame-
ters can be approximated for aligned simulated Visible and
Infrared spectrum visual images using a multispectral match-
ing loss function[19] which adds a perceptual loss term to
the L2 loss between simulation and real RGB image features.
The perceptual loss is defined as the L2 difference between
the AlexNet visual features that reduces the need for color,
exposure and lighting condition alignment thereby improv-
ing the accuracy of material acquisition and results in better
rendering.

2.2. Simulating sensor noise

Simulations have often used simplified models for thermal
camera noise, surface lighting, reflectance, radiance, refrac-
tion and soft shadows which leads to a large domain gap
between real world data and synthetic simulation data. For
infrared sensors, Sensor specific noise such as laser speckle
and thermal noise can be modelled[3] by using a element
wise multiplicative term for laser speckle and a element wise
additive term for camera thermal gaussian noise[7].

Prior approaches for simulating depth sensor noise and
estimating depth from monocular RGB images have limited
transferability due to lack of geometric accuracy and scale.
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This results in unrealistically smooth depth maps with an un-
kown scale and cannot be used for tasks that require precise
geometric information.

Geometric and semantic information from RGB and depth
have only been combined using simple fusion techniques
without focussing on the common and complementary in-
formation from both ‘RGB’ and ‘Depth’ modalities for a
improved concatenated representation. This can be crucial in
scenarios with varying visual RGB features but stable depth
features or vice versa.

Geometric information in the generated depth can be
preserved during generation by making the differentiable
features invariant[13]. However, it lacks surface property
dependent depth errors. Differentiable ray tracing has used
to estimate depth in simulations by optimizing for rendering
and stereo matching parameters[8].

2.3. Depth Completion

For the task of depth completion, missing depth values for
input RGBD images can be generated by predicting surface
normals and occlusion boundaries from color to get complete
output depth[20].

Early depth completion methods often lacked geometric
constraints, leading to inconsistencies in the predicted depth
maps, especially in complex scenes with intricate geometries.
Ignoring geometric information can result in depth predic-
tions that do not align with the underlying 3D structure of
the scene. To address this limitation, recent approaches have
incorporated surface normal guidance to enforce geometric
consistency in depth completion [9, 16, 21].

For instance, methods like DeepLiDAR [9] integrate sur-
face normal information derived from color images to im-
prove the accuracy and reliability of the completed depth
maps. By leveraging surface normals and geometric con-
straints, these methods produce depth predictions that are
more consistent with the scene geometry, leading to better
performance in regions with intricate structures and disconti-
nuities.

3. Method
We condition a generative model on noisy and incomplete
RGBD sensor data to generate accurate and smooth depth
maps. Specifically, a latent diffusion model (Stable Diffusion
v2 [11]) is trained to iteratively denoise a latent representa-
tion of our depth map. We employ pretrained diffusion mod-
els for text-to-image generation, trained on large datasets,
to exploit semantic and geometric priors that can improve
the performance of our method while reducing the required
training data and time. A robust conditioning strategy is
implemented to ensure that these pretrained models do not
suffer from overfitting or catastrophic forgetting.

Training. Fig. 1 shows an overview of our training
pipeline. Following Marigold [2], we adapt the pretrained
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Figure 1. System overview for training

U-Net from Stable Diffusion V2 [11] as the latent denoiser
and use the corresponding VAE to encode the input image,
the input sensor depth map, and the ground-truth depth map.
Since the VAEs were designed for 3-channel RGB inputs,
we replicate the single-channel depth inputs into 3 channels
each. The VAE is not retrained for depth; as demonstrated in
[2], the Stable Diffusion VAE can encode and decode these
replicated depth maps with minimal reconstruction error.

We then concatenate all three resulting latent codes (RGB
input image, noisy incomplete sensor depth, and ground-
truth depth with added sampled noise), each of which has
4 latent channels, resulting in a total of 12 input channels
along the feature dimension to the U-Net. To preserve the
pretrained weights of the U-Net’s first layer, we duplicate
its original input layer weights (trained on 4-channel inputs)
three times along the channel dimension, and then divide all
the weights by 3. This ensures that each newly added set of
4 channels is initialized similarly to the original, preventing
a sudden change in activation magnitudes and ensure stable
training. As a result, the scale of the network’s inputs and
activations is kept consistent, allowing the U-Net to rely
on its previously learned feature extraction capabilities and
prevent catastrophic forgetting. The latent denoiser is trained
to predict the added Gaussian noise with uniformly sampled
noise level t.

Inference. Fig. 2 shows an overview of our pipeline for
inference. At inference time, we concatenate the latent codes
of input image, input sensor depth and depth map, which is
a normally-distributed Gaussian noise initially. The latent
depth map is iteratively denoised by the latent denoiser T
steps before being decoded, and we take the average of the
three channels to be the predicted depth map.
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Figure 2. System overview for inference

4. Experiments

4.1. Baselines

We compare our method with state-of-the-art monocular
depth estimation methods including:
• Marigold [2]. A diffusion-based monocular depth estima-

tion method pre-trained on the LAION-5B dataset [12] for
promt-image generation, and finetuned for depth estima-
tion on 74k image samples from the Hypersim [10] and
VKITTI [1] syntethic datasets.

• Depth Anything V2 [17](small). A transformer-based
discriminative method for monocular depth estimation,
trained on 65 million image samples from different indoor
and outdoor datasets.
The predicted depth maps are aligned to the ground truth
using least squares method before evaluation.

4.2. Datasets

Training datasets. We train our model on the IRS [15] and
VKITTI [1] datasets. Both datasets contain synthetic stereo
images, that are used to generate a total of 35k training
samples with RGB, ground truth depth and sensor depth.
The IRS dataset [15] includes images from indoor scenes
like hotel rooms and stores. The VKITTI [1] dataset contains
images from urban environments collected from a vehicle in
a simulated environment.

1. Indoor Robotics Stereo (IRS) Dataset [15]
2. NYUv2 dataset [6]
3. Virtual KITTI (VKITTI) [1]

Evaluation datasets. We evaluate our approach on a
subset of 350 samples from the IRS dataset, 410 samples
from the VKITTI [1] dataset, both seen during training, and
200 samples from the NYU-V2 dataset [6] for zero-shot
evaluation. The NYU-V2 dataset [6] contains RGBD images
from indoor environments, captured with the Kinect sensor.

4.3. Metrics

We use standard metrics for evaluation of depth estimation
methods, including:
• Mean Absolute relative error (MAE)

AbsRel =
1

T

∑
i∈T

|dgti − di|
dgti

• Mean squared Relative error (REL)

SqRel =
1

T

∑
i∈T

|dgti − di|2

dgti

• Root-mean-squared error (RMSE)

RMSE =

√
1

T

∑
i∈T

(dgti − di)2

• Accuracy with threshold: δt. Percentage of pixels such
that:

max

(
dgti
di

,
di

dgti

)
< t

Where dgti is the ground-truth depth for pixel i, di is the
estimated depth, and T is the total number of pixels in all
the evaluated images.

The evaluation is conducted after aligning the predicted
depth map to the ground truth depth maps by least-squares
fitting. In addition, as an alternative strategy, we perform
scale and shift correction for our method leveraging the sen-
sor depth map. This is done by denormalizing the predicted
depth map with the scale and shift factors used during the
normalization of the sensor depth map.

5. Results
Fig. 3 shows sample depth predictions by our method and
the baselines. We can see that all the methods predict similar
depth maps in terms of smoothness and consistency with
the ground truth. However, the error maps indicated that our
model predictions exhibit lower error (darker error maps)
than the baselines. This is more noticeable for samples from
the IRS [15] and VKITTI [1] datasets, seen during training.
Unlike these datasets, the NYUV2 dataset [6] contains real-
world RGBD images, causing a performance drop due to
distribution shift in color and sensor depth patterns.

Table 1 indicates that our method outperforms the base-
lines in most cases, resulting in accuracy improvements
(delta1 metric) of 7%, 0.5% and 2.4% on the IRS [15],
VKITTI [1] and NYUV2 [6] datasets. This results suggests
that sensor depth maps that condition the diffusion model
can effectively improve the accuracy of depth estimation
methods. Furthermore, we found that our proposed strategy
for scale and shift correction using the sensor depth map

https://onedrive.live.com/?redeem=aHR0cHM6Ly8xZHJ2Lm1zL2YvcyFBbU43VTlVUnBHVkdlbTBjb1k4UEpNSFlnMGc%5FZT1udkg1b0I&id=4665A411D5537B63%21122&cid=4665A411D5537B63
https://cs.nyu.edu/~silberman/datasets/nyu_depth_v2.html
https://europe.naverlabs.com/Research/Computer-Vision/Proxy-Virtual-Worlds
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Figure 3. Depth prediction and absolute error for different methods. The error maps go from zero (black) to 10% of maximum depth (white).
Note that our method exhibits darker error maps, meaning higher accuracy on depth estimation.

leads to more accurate depth predictions (2% on average)
than the commonly used least-squares fitting method, in par-
ticular for the indoor datasets (IRS [15] and NYUv2 [6]).
However, in the case of the VKITTI [1] dataset, the least-
squares alignment surpasses our method. An explanation
for this could be that the least squares method explicitly
reduces larger errors, which in the case of ourdoor datasets
like VKITTI [1], are concentrated in farther distances. As
our method does not penalize large errors directly, it exhibits
lower accuracy. However, further experiments are necessary
to explain this discrepancy.

5.1. Ablation Studies

We train and evaluate two additional conditioning strategies:
(i) RGB + sensor depth + mask simple conditioning. This
uses the same pipeline shown in Fig. 1, but includes an
inpainting mask to constrain the loss function to missing
pixels only. This approach is inspired by color inpainting
models. Instead of passing the mask through a decoder, we
downsample the original mask to a 64x64 resolution which
is directly concatenated with the latent vector.

(ii) ControlNet [18] conditioned on RGB and sen-
sor depth. By leveraging zero convolutions, ControlNet
has demonstrated superior performance on various condi-
tioned generative tasks. Specifically, we concatenate the

color channels with the sensor depth map and use this com-
bined tensor as input to a CNN encoder. Unlike the origi-
nal ControlNet[18], where the controlled network is frozen
during training, we fix only the encoder weights and fine-
tune the decoder. This adjustment is necessary because the
original stable diffusion model[11] is pretrained for image
generation rather than depth generation.

Fig. 7 shows sample predictions for our three condition-
ing strategies. While the two simple conditioning strategies
(with or without inpainting masks) generate consistent depth
maps, ControlNet[18] tends to produce artifacts and distort
the original objects’ shapes. This could be attributed to the
fact that part of the controlled network remains frozen during
training, making it challenging for the model to learn new
geometric features. These inconsistencies result in signif-
icant performance drops for ControlNet[18], as shown in
Table 2. Overall, the simple conditioning strategies (with
or without the inpainting mask) outperform ControlNet[18]
by more than 7% in the delta1 accuracy metric across all
datasets. Finally, while the inpainting mask does not signifi-
cantly improve the model’s accuracy, slight improvements
are observed in some cases.



Dataset Method Scale and shift Correction AbsRel SqRel delta1 acc delta2 acc

IRS [15] Marigold[2] Least Squares 0.117 0.276 0.900 0.964
Depth Anything V2[17] Least Squares 0.121 0.261 0.886 0.961
Depth Completion (ours) Least Squares 0.064 0.212 0.951 0.970
Depth Completion (ours) Sensor depth scale 0.046 0.099 0.976 0.988

VKITTI [1] Marigold[2] Least Squares 0.120 1.079 0.886 0.967
Depth Anything V2[17] Least Squares 0.239 2.132 0.588 0.881
Depth Completion (ours) Least Squares 0.110 0.910 0.891 0.972
Depth Completion (ours) Sensor depth scale 0.270 2.929 0.574 0.937

NYUv2 [6] Marigold[2] Least Squares 0.093 0.080 0.910 0.970
Depth Anithing V2[17] Least Squares 0.098 0.064 0.904 0.974
Depth Completion (ours) Least Squares 0.084 0.062 0.906 0.971
Depth Completion (ours) Sensor depth scale 0.065 0.063 0.924 0.965

Table 1. Comparison of depth estimation methods across IRS [15], VKITTI [1] and NYUV2 [6] datasets.

Table 2. Evaluation metrics for different conditioning strategies

Dataset Conditioning Method Scale and shift correction AbsRel ↓ SqRel ↓ rmse linear ↓ delta1 acc ↑ delta2 acc ↑

IRS [15]

RGB + sensor depth Least Squares 0.064 0.212 0.464 0.951 0.970
Sensor depth scale 0.046 0.099 0.540 0.976 0.988

RGB + sensor depth + mask Least Squares 0.076 0.228 0.503 0.944 0.969
Sensor depth scale 0.070 0.179 0.601 0.964 0.984

ControlNet (RGB + sensor depth) Least Squares 0.143 0.342 0.654 0.885 0.941
Sensor depth scale 0.182 0.639 0.818 0.876 0.949

NYUv2 [6]

RGB + sensor depth Least Squares 0.084 0.062 0.388 0.906 0.971
Sensor depth scale 0.065 0.063 0.416 0.924 0.965

RGB + sensor depth + mask Least Squares 0.083 0.057 0.372 0.911 0.977
Sensor depth scale 0.071 0.058 0.394 0.924 0.972

ControlNet (RGB + sensor depth) Least Squares 0.140 0.143 0.527 0.847 0.942
Sensor depth scale 0.140 0.160 0.567 0.853 0.942

VKITTI [1]

RGB + sensor depth Least Squares 0.110 0.910 4.967 0.891 0.972
Sensor depth scale 0.270 2.929 8.369 0.574 0.937

RGB + sensor depth + mask Least Squares 0.105 0.955 4.855 0.920 0.974
Sensor depth scale 0.191 1.360 5.333 0.804 0.967

ControlNet (RGB + sensor depth) Least Squares 0.154 1.852 6.716 0.861 0.948
Sensor depth scale 0.302 3.197 7.930 0.524 0.915

6. Conclusion and Future Work

Diffusion models conditioned on RGB and noisy sensor
depth exhibit a slight improvement in accurate depth estima-
tion compared to pure monocular depth estimation methods.
This suggests that sensor depth provides valuable guidance
to the model for estimating accurate depth.

Our approach demonstrates generalization to real-world
indoor scenes, despite being fine-tuned on synthetic data
only. This can be attributed to the fact that the original Stable
Diffusion model was trained on large datasets, capturing
strong semantic and geometric priors from diverse domains.

Future work aims to expand the conditioning inputs be-
yond RGB and standard depth by incorporating additional
modalities such as thermal (Fig 4), monochrome, near-
infrared (NIR) images, semantic and instance masks to cap-
ture both local and global features at the object part level

to improve generalization to other datasets and camera sen-
sors. To incorporate more conditioning inputs and modalities,
such as point clouds, text, thermal images, and near-infrared
images, the frozen VAE encoder can be selectively chosen
for each specific input modality to improve the resultant
embeddings.
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Appendix

A. Code
All code references, evaluation scripts, and configura-
tion files are publicly available at our GitHub repository:
[CS598SHW Depth Completion].

B. Implementation details
• Pretrained Models: We use the Stable Diffusion V2

weights for both U-Net and VAE encoder. [11].
• Baselines: We compare against Marigold [2] and Depth

Anything V2 (DAV2) [17]. Pre-trained models and code
for implementation were obtained from their respective
official repositories:
1. [Marigold code and documentation]
2. [Depth Anything V2 code and documentation]

• Training: Training our method takes 36K iterations using
a batch size of 32. Training our method to convergence
takes approximately 3 days on a single Nvidia A100 GPU.

• Evaluation Metrics: We implement standard metrics
(MAE, REL, RMSE, δ1, δ2) as described in the main
paper.

• Hyperparameters: We use a learning rate of 3 × 10−5,
Adam optimizer, and a noise schedule adapted from Stable
Diffusion V2 for noise injection. For further details, please
refer to the repository’s configuration files.

https://github.com/kulbir-ahluwalia/CS598SHW_Depth_Completion
https://github.com/prs-eth/marigold
https://github.com/DepthAnything/Depth-Anything-V2


Figure 5. Comparison of Depth Predictions on the IRS Dataset. Predictions using our approach (Pred. Ours) leverages sensor depth to
produce more geometrically consistent depth maps than monocular-only baselines. Even in challenging indoor scenes with cluttered objects
and complex lighting, our method preserves fine details such as complex geometry lanterns, thin light tubes, thin structures in furniture and
mitigates artifacts in many cases that persist in monocular depth maps from Marigold[2] and DepthAnyV2[17].



Figure 6. Depth Error Visualization for IRS Dataset. The error maps (calculated as absolute differences from ground truth) highlight the
regions where predictions deviate from ground truth. Our method’s error maps exhibit fewer high-error regions compared to monocular
baselines. This suggests that sensor conditioning provides valuable geometric cues, especially in areas with low texture, thin geometry, small
objects or ambiguous structures.



Figure 7. Impact of different conditioning strategies on depth prediction. Simple conditioning with RGB and sensor depth predicts more
consistent depth maps than ControlNet[18]. ControlNet[18] tends to predict wrong object’s shape and artifacts.



Figure 8. Depth prediction error for multiple conditioning strategies. Simple conditioning with RGB and sensor depth leads to more accurate
depth predictions than complex conditioning strategies like ControlNet[18].
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