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Abstract

Rendering is a process in computer graphics where artists
define scene geometry, materials, lighting and a virtual
camera’s parameters which enable modern software to gen-
erate a photo-realistic image. The ability to reverse the
process of rendering (i.e. from images to geometry, ma-
terials, lighting, etc.) is called Inverse Rendering. This
technique gives creative professionals a tool to edit images
in whole new ways, allowing them to perform object inser-
tion, light editing, and materials editing with applications in
augmented and virtual reality. Inverse Rendering is a large
body of problems with algorithms tailored to various input
representations and scene properties to estimate, some be-
ing optimization based and others utilizing learned priors.
Neural Inverse Rendering has seen an explosion of growth
in recent years with the advent of deep learning, radiance
fields, and increased computing capabilities. In this survey,
we dive into their variety of techniques and capabilities. Ad-
ditionally, we evaluate current methods, trends and explore
future research ideas.

1. Introduction

Inverse Rendering, sometimes also referred to as intrinsic
image decomposition, aims to estimate the physical proper-
ties of a scene that is used to render a given image. These
inverse rendering techniques typically take one or multiple
images as input. Some methods also use scanned geome-
try, videos or user guidance to further improve and refine
the quality of results. The estimated physical properties in-
clude materials, albedo, roughness, lighting, normal, geom-
etry, etc.

Traditionally, this has been a highly ill-posed problem,
requiring extensive assumptions and handcrafted models.
Neural Inverse Rendering gained traction in recent years
with increased computing resources and innovations on
deep learning, which gave rise to techniques that bene-
fit from the strong learned prior of deep learning models
trained on large-scale real world datasets.

In this survey, we conduct extensive review of this topic.
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Figure 1. An example of inverse rendering and intrinsic image de-
composition [5]. Given a single input image, geometric (normal,
depth), materials (albedo) and lighting (shading) properties are es-
timated.

Inverse Rendering approaches can be broadly categorized
by its conditional input, including: geometry, single view,
multi-view, and 3D Geometry, and we give brief review of
these methodologies. We also explore the capabilities in-
cluding materials editing, light editing, novel view synthe-
sis and object insertion. We summarize all papers reviewed
in Tab. |

1.1. Motivation of Inverse Rendering

The goal of inverse rendering is to decompose an image
into its intrinsic physical properties that allow the image
to be edited as desired by the user and then re-rendered
into a new image that remains photo-realistic. Materials
editing, re-lighting, and object insertion are among to most
popular capabilities of recent inverse rendering techniques.
Sec. 3 discusses some of these capabilities of inverse ren-
dering techniques in detail. Applications include gaming,
augmented reality (AR), virtual reality (VR), robotics sim-
ulation, and film production.

1.2. Background

In this section, we review preliminary knowledge on inverse
rendering. Sec. 1.2.1 discusses lighting, materials and ge-
ometry that are used for rendering and are the outputs of
most inverse rendering pipelines. Sec. 1.2.2 discusses vari-
ous scene representations that inverse rendering techniques
will use as their conditional input to their pipeline.



1.2.1 Scene Properties of Interest

We discuss the different scene properties that various in-
verse rendering techniques will output as part of pipeline
and in many cases help to enable further editing of the
scene.

Lighting. Illumination plays a crucial role in computer
graphics and rendering. Modern graphics rendering en-
gines are capable of utilizing a 360° image known as a High
Dynamic Range Image (HDRI) to illuminate the rendered
scene. Filmmakers who use visual effects to insert com-
puter generated objects into a scene will typically use a mir-
ror ball known as a light probe to capture the environmental
lighting and generate an HDRI that matches the scene, so
that the inserted objects look realistic with proper reflec-
tions and shadows. However, this method requires physical
presence in same location with the same lighting condition
as the captured scene, which is not always possible. Inverse
lighting problems aim to estimate emissivities and positions
of light sources, either jointly or given the other.
Materials. The physical properties of objects in a scene
dictate the intensity, direction and color of light reflected
from the objects. Representations of material properties in-
clude reflectance (albedo), shading (irradiance), roughness,
and metallic. These can be stored as 2D images with per-
pixel mappings. Roughness and metallic maps in particular
can be stored as bidirectional reflectance distribution func-
tion (BRDF) maps.

Geometry. The shape of an object is crucial to determining
the direction and intensity of light that enters the camera
as well as the shape of the shadows and inter-reflections.
In screen space, normal maps are used to represent per-
pixel surface directions while depth maps show per-pixel
distance away from the camera; 3D representations of ge-
ometry include triangular mesh, point cloud, and signed dis-
tance fields (SDF), etc.

1.2.2 Input Representations

Various techniques utilize different scene representations as
conditional inputs to their pipeline.

Single Image. Estimating scene properties from a single
image [5, 7, 9, 12, 14-16, 22, 26, 34, 36] is challenging
and seem almost impossible due to the infinite number of
illumination, geometry and materials that could produce the
same single image. However, there are some explanations
that are more likely than others. Many techniques use data-
driver approach to produce the most likely explanations.
Multi-view images. As opposed to single image, inverse
rendering using multi-view images [1, 4, 19, 20, 30, 32, 33,
35] provides a variety of information about the scene, which
reduces the number of possible scene property explanations
that produce the scene. One key challenge is the lack of
large scale dataset available on multi-view HDR synthetic

dataset. The handling of multi-view images in efficient
pipeline designs is also less trivial and requires careful de-
sign of model architecture. However, they tend to produce
better results than single images simply due to the amount
of data available.

Scanned Geometry. Recent popularity on inexpensive mo-
bile LiDAR and RGB-D sensors gave rise to advances in
3D geometry reconstruction. Conditioning on reconstructed
3D geometry [1, 19] allow differentiable renderers to jointly
optimize on materials and lighting, providing a more accu-
rate estimation of the scene properties.

2. Taxonomy
2.1. Datasets

Real Image Datasets It is very difficult to collect datasets
of intrinsic images (albedo, normal, shading etc.) on real
images due to the amount of information needed to accu-
rately annotate each pixel. Therefore, existing datasets are
often sparse rather than per-pixel, and often require crowd-
sourcing. Two notable datasets in this space include the
Intrinsic Images in the Wild (IIW) and Shading Annota-
tions in the Wild (SAW) datasets [3, 10], where reflectance
and shading annotations are collected on real indoor images.
However, they are hard to train dense networks due to their
sparse annotations derived from only a few thousand sam-
ples.

Synthetic Datasets Computer generated synthetic datasets
benefit from the ability to easily acquire per-pixel ground
truth intrinsic image annotations at a much larger scale
without crowd-sourced human annotations. = SUNCG
dataset [23] contains a large, diverse set of indoor scenes
with complex geometry, containing 45,622 scenes with over
5M instances of 2644 unique objects in 84 object cate-
gories. Further modifications of this dataset has been seen
in follow-up works such as the CGlntrinsics dataset [12]
that provides ground truth reflectance and ground truth
shading. Li et al. further improves the SUNCG dataset by
photo-realistically maping microfacet materials to SUNCG
geometries

2.2. Image-Space Estimation with Learned Priors

Recent innovations in deep neural networks and ever in-
creasing GPU compute power enabled intrinsic image de-
composition to benefit from strong learned prior of deep
learning models trained on large-scale datasets. With data-
driver approach, deep learning models are able to learn from
a variety of different lighting conditions, materials, and ge-
ometry, allowing them to retain knowledge about what is
the most likely solution. In this section, we discuss the var-
ious deep learning architectures and models that enable in-
verse rendering techniques to produce accurate estimation
of scene properties.



2.2.1 Convolution Neural Network

Convolution Neural Network (CNN) has seen an explosion
of popularity in recent years due to their success in solving
tasks including image classification, object detection, and
semantic segmentation. [22] and [24] use CNN to estimate
HDR environmental light maps for object insertion tasks.
Li et al. estimates lighting and materials using a CNN-
based Cascade Network that progressively increases reso-
lution and iteratively refines the predictions through global
reasoning. Philip et al. uses a multi-scale convolutional net-
work to output diffuse and specular image.

Many techniques also use the CNN-based U-Net archi-
tectures due to its ability to generalize to multiple scales
and its image-to-image dense prediction capabilities. [12]
and [13] use modified versions of U-Net to estimate albedo
and shading given a single image. [14] and [26] use U-Net
based architectures to produce depth and normal maps in
addition to albedo and shading to achieve light editing and
object insertion tasks respectively.

2.2.2 Diffusion Models

Diffusion Models have gained traction in recent years
thanks to its capabilities to generate high-quality realis-
tic images based on different conditioning such as texts,
bounding boxes, images, etc. These diffusion models are
trained on large scale real world data, often consisting of
image and text pairs, and retain strong learned prior from a
variety of different scenes. Kocsis et al. exploit the learned
prior of recent diffusion models and transfer it to material
estimation task. Du et al. use light weight Low-Rank Adap-
tors (LoRA) [6] to finetune diffusion models to produce nor-
mals, depth, albedo, and shading of a given input image.

2.2.3 Transformer Models

Vision Transformer (ViT) models benefit from its spacial at-
tention layers that give them global reasoning capabilities as
opposed to CNN whose receptive fields remain largely lo-
cal throughout the consecutive layers, limiting the ability to
capture long-range interactions that are crucial for light esti-
mation. IRISformer [36] use 4 transformer layers with both
encoders and decoders to estimate spacially-varying light-
ing. While not exactly using transformer models, MAIR [4]
uses a multi-view attention network (MVANet) to aggregate
multi-view images and estimate albedo, roughness, and nor-
mal that allows them to perform object insertion with high
accuracy on reflected light of specular objects.

2.3. Differentiable Rendering and Radiance Fields

Scene representations are not limited to explicit, descrip-
tive modeling of geometry, lighting, and reflectance, as they
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Figure 2. NeRF [18] models the scene with the plenotic function
[11], which takes in position and viewing direction (z, y, z, 6, ¢)
and outputs color and density (RG Ba). The loss is specified as the
difference between the rendered and ground truth in image space
(d). Radiance fields are the basis for many of the SOTA inverse
rendering algorithms.

could also be approximately implicitly with neural meth-
ods as simple as multi-layer perceptrons (MLP). As long as
the representation is differentiable, the primary optimiza-
tion goal could be formulated in image-space to fit an im-
plicit representation to multi-view images of a given scene.
Shown in Figure 2, Mildenhall et al. proposed Neural Radi-
ance Fields (NeRF) that models the scene with the plenop-
tic function [11], a continuous function over the product of
3D locations in the scene and viewing angle that outputs
color and density. To render this representation, we accu-
mulate this function and perform alpha blending at discrete
intervals along a ray. In the original NeRF paper, the rep-
resentation is parameterized by a MLP [18], but subsequent
works have shown that voxel and point-based volumetric
representations could also achieve similar or better results
[8, 28, 29]. The radiance field is overfit for a specifc scene
in training to minimize the previously described rendering
loss. Many works in inverse rendering also capitalize on
implicit and differentiable representations due to their flexi-
bility in modeling, some inspired by the NeRF [18] and 3D
Gaussian Splatting [8]. We broadly categorize these works
utilizing differentiable rendering into two categories, opti-
mization and learned approaches. Yet, these methods differ
from the aforementioned image-space learned approaches
in Section 2.2 as they aim to label scene properties in 3D
space.

2.3.1 Optimization-Based Inverse Differentiable Ren-
dering

Given coarse reconstructed geometry and object segmen-
tation, Inverse Path Tracing estimates the parameters of
a physically-based light transport function by perform-
ing path tracing on multi-view images, selecting different
BRDFs for different objects [1]. Monte-Carlo sampling is
used for the BRDFs to generate more rays in the path trac-
ing process. Since this process is stochastic, the rendered
image will be noisy; however, in optimization, this is equiv-
alent to stochastic gradient descent when back propagating.



Due to the amount of computation involved, Inverse Path
Tracing could only handle very simple geometry and rela-
tively consistent materials properties for the same object.

To overcome these limitations, PhysSG models the scene
geometry using signed distance functions (SDFs) approx-
imated by MLPs, the reflectance using a monochrome
isotropic BRDF, and the illumination using a environment
map [30]. To generate a closed form solution and avoid
Monte-Carlo sampling in the forward pass, the authors
used a mixture of 128 spherical Gaussians (SG) [27] to ap-
proximate the environment map. The rendering process of
PhysSG is differentiable, and all parameters are jointly op-
timized using multi-view images [30]. The model makes
several assumption for simplicity in modeling and reduced
computation, namely specular isotropic BRDFs and direct
illumination.

Both Inverse Path Tracing [1] and PhysSG [30] model
indirect illumination with path tracing or an environment
map, which are either costly or oversimplified. Zhang et al.
proposed capturing indirect illumination directly from the
plenoptic function in a radiance field, first training a regular
radiance field to capture geometry and lighting and optimiz-
ing a spatially varying BRDF (SVBRDF) on top of it [33].
The outgoing radiance is already encoded in the radiance
field, resulting in reduced computation.

Modeling indirect illumination with the outgoing radi-
ance is still an approximation, as it’s not guaranteed that
the ground-truth has enough guidance for rays that origi-
nate from inside a surface. I?-SDF improves the physical
accuracy by modeling neural SDF, radiance material, and
emission fields separately and performing path tracing on
top [35].

3D Gaussian Splatting [8] generally produces SOTA
quality reconstructions with the same compute. However, it
does not produce reliable normals or support for occlusion
in indirect lighting, which GS-IR [17] addresses by con-
centrating depth gradients during optimization and baking-
based approach to recover an occlusion cubemap for reflec-
tion. Along this direction, GIR [21] bakes the radiance field
into a voxel grid for indirect lighting.

2.3.2 Radiance Fields with Pretrained Priors

As an under-contrained task, inverse rendering tasks would
benefit from learned priors for works that build upon dif-
ferentiable rendering and radiance fields as well. Li et al.
propose using multiple encoder-decoder networks in a cas-
cading fashion to sequentially predict scene properties and
borrow the idea of differentiable rendering to back propa-
gate through all of the networks. [16, 26] also use differen-
tiable rerendering to further optimize the neural predictors.
Zhu et al. use screen-space raytracing based on the G-buffer,
which, along with SVBRDF and other properties, are gener-

ated by neural predictors. Similar to [33], NeRFactor jointly
estimates geometry, SVBRDF, and indirect illumination us-
ing a radiance field but pretrains a BDRF encoder to provide
better guidance for what BRDFs are empirically observed
[32]. GIR [21] also produces an environment map using a
learned component.

3. Current Capabilities and Evaluation

In this section, we discuss the capabilities of current tech-
niques to make image edits after intrinsic image decompo-
sition. These edits include material editing, light editing
(re-lighting), and object insertion. We also provide discuss
evaluations of these tasks through existing benchmarks.

3.1. Material Editing

Material editing allows creative professionals to change the
color, roughness, and reflectance (albedo) of the scene. For
example, an interior designer could change the color of the
wall, floor and furniture of a given scene and decide what
works best. In our literature review, we observe that the
following papers are capable of material editing: [9, 15, 16,
16, 30, 32, 34, 36].

3.2. Light Editing

Light Editing, also known as re-lighting, is a way to change
direction, intensity and light source while keeping the shad-
ows and reflections in the scene consistent. Kocsis et al.
demonstrated its ability to change the color of lamps in
a bedroom while Nimier-David et al. showed accurate re-
lighting of an indoor scene throughout different times of
day, with the sun shining through the window with different
angles and intensity. In addition, [14, 16, 20, 30, 32, 33, 35]
are all capable of editing lights within a scene.

3.3. Object Insertion

Realistically insert objects into a scene has many applica-
tions, such as in augmented reality and robotic simulations.
One of the earliest work on object insertion is by Karsch
et al.. They showed realistic insertion of objects with small
amounts of user interaction and showed its ability to con-
fuse human perceptions in a user study. Srinivasan et al.
use CNN based architecture to generate a spherical envi-
ronment map and demonstrated its ability to insert highly
specular virtual objects into real images with accurate re-
flections. Additionally, [4, 15,22, 26, 34, 36] are all capable
of object insertion tasks.

3.4. Metrics

Evaluation of capabilities such as material editing, light
editing and object insertion are often subjective and there-
fore require conducting user studies. For quantitative anal-
ysis, many papers will use Peak Signal-to-Noise Ratio



(PSNR), Structural Similarity Index Measure (SSIM) [25],
and Learned Perceptual Image Patch Similarity (LPIPS)
[31] to evaluate image quality.

4. Future Directions

Current methods are only capable of inversely rendering of
the scene that is in the view. However, there is a lack of liter-
ature that is able to estimate the geometry, lighting, and ma-
terials of objects that are out of view. With increased popu-
larity of Diffusion Models that are capable of out-painting,
future work can focus on expanding the scene in creative
ways conditioned on text, and even generating 360 degree
scene properties, enabling rendering for VR applications.

Fundamentally an under-constrained problem, inverse
rendering would also benefit from more rigorous priors,
with improvements either manifesting in improved quality
or reduced compute. As foundational models grow larger
by the power scaling law, they could provide stronger guid-
ance for scene properties especially for single-image and
few-shot cases where ray tracing or path tracing lack suffi-
cient input data to generate SOTA results.
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